
www.elsevier.com/locate/ijhmt

International Journal of Heat and Mass Transfer 50 (2007) 1790–1804
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Abstract

The present study explores numerically and experimentally the process of melting of a phase-change material (PCM) in spherical
geometry. Its properties used in the simulations, including the melting temperature, latent and sensible specific heat, thermal conductivity
and density in solid and liquid states, are based on a commercially available paraffin wax, which is manufactured to be used mainly in
latent-heat-based heat storage systems. A detailed parametric investigation is performed for melting in spherical shells of 40, 60, and
80 mm in diameter, when the wall-temperature is uniform and varies from 2 �C to 20 �C above the mean melting temperature of the
PCM. Transient numerical simulations are performed using the Fluent 6.0 software. These simulations show the melting process from
the beginning to the end, and incorporate such phenomena as convection in the liquid phase, volumetric expansion due to melting, sink-
ing of the solid in the liquid, and close contact melting. The results of the experimental investigation, which included visualization, com-
pare favorably with the numerical results and thus serve to validate the numerical approach. The computational results show how the
transient phase-change process depends on the thermal and geometrical parameters of the system, including the temperature difference
between the wall and the mean melting temperature, and the diameter of the shell. Dimensional analysis of the results is performed and
presented as the mean Nusselt numbers and PCM melt fractions vs. an appropriate combination of the Fourier, Stefan, and Grashof
numbers. This analysis leads to generalization which encompasses the cases considered herein.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: Melting; PCM; Simulation; Dimensional analysis; Correlation
1. Introduction

Phase-change in spherical geometry is of great interest
both from the theoretical point of view and for the devel-
opment of heat storage systems based on the use of
latent-heat. A considerable amount of literature on this
subject reflects experimental, theoretical, and numerical
investigations undertaken in the past [1], while active work
in the field continues, e.g. [2,3].

The processes of phase-change are not the same for dif-
ferent materials. For example, melting of ice is determined
by the fact that it is lighter than water [4,5]. When an
enclosed ice sphere melts, the total volume decreases. The
solid fraction floats at the surface of the melt water and
0017-9310/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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touches the inside surface of the sphere. A spherical shape
of the solid fraction is retained for most of the melting pro-
cess except towards the end when it loses its spherical shape
and becomes flattened or elongated until melting is com-
pleted. On the other hand, when the solid is denser than
the liquid, it is expected that the solid bulk, if it is not fixed,
will move vertically downward. The motion of the solid
bulk is accompanied by generation of liquid at the melting
interface. This liquid is squeezed up through a narrow gap
between the melting surface and the wall of the shell, to the
space above the solid. The effect of solid phase sinking and
appearance of ‘‘close contact melting” [6] is very signifi-
cant. The literature shows that when the solid is fixed by
some mechanical obstacle, both melting patterns and qual-
itative characteristics of the process become entirely differ-
ent, as shown by Rieger et al. [7], Khodadadi and Zhang
[8], Katayama et al. [9]. It is worth to note that such result
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Nomenclature

cp specific heat at constant pressure (J/kg �C)
D diameter (m)
Fo Fourier number (k/qcp)(t/R2)
Gr Grashof number (gq2bDTR3/l2)
�h enthalpy (J/kg)
h heat transfer coefficient (W/m2 �C)
k thermal conductivity (W/m �C)
L latent heat (J/kg)
Nu Nusselt number (q00/DT)(R/k)
Pr Prandtl number (cpl/k)
q00 heat flux (W/m2)
R radius (m)
Ste Stefan number (cpDT/L)
t time (s)
T temperature (�C or K)
u velocity component (m/s)
x Cartesian coordinate (m)

Greek symbols

a phase volume fraction
b volumetric expansion coefficient (1/K)
c liquid fraction
D difference
l dynamic viscosity (kg/m s)
q density (kg/m3)

Subscripts

i component
m melting
ref reference value
w wall
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is not always intentional, and may be caused, for instance,
by thermocouple wires inserted into the enclosure. For this
reason, it has become common to monitor the melting pro-
cess directly, using transparent bases for horizontal cylin-
ders [10], and transparent spherical shells [11], rather
than to measure temperatures. Accordingly, the observed
location of the solid–liquid interface or the fraction of
melted phase in the total amount of the PCM are used as
the parameters which characterize the process qualitatively.

Modeling of melting in spherical geometry presents,
therefore, a considerable challenge. In addition to the
non-linear behavior of the melting front, common to all
phase-change problems, we encounter here such phenom-
ena as convection in the melt, volumetric expansion,
motion of the solid in the melt, and motion of the liquid
in the gap between the solid and the wall of the shell.
Due to the difficulties in modeling, it has become common
to neglect some of these phenomena and approximate the
remaining ones when a numerical solution is attempted.

Works that look into details of the melting process in
spherical and horizontal cylindrical enclosures started to
appear in the literature in early eighties. A numerical anal-
ysis of melting in a horizontal cylinder, performed by Nich-
olas and Bayazitoglu [12], was the first to consider the
effects of solid/liquid density change, while neglecting con-
vective motion in the melt. Moore and Bayazitoglu [11]
studied experimentally and numerically melting in a spher-
ical enclosure. Their numerical model included both the
descend, or sinking, of the solid phase in the liquid due
to the density difference, and fluid motion that contributes
to the convective term in the energy equation for the liquid
phase. In the numerical solution of Moore and Bayazitoglu
[11] the origin of the coordinate system was positioned in
the solid region, restricting the modeling of the process
from its full completion. Based on the small velocity of des-
cend, the velocity field was modeled by a quasi-steady
approach. The gap between the solid and the wall in the
lower part of the enclosure was approximated as the
Poiseuille flow between two stationary parallel plates. In
the experiments, Moore and Bayazitoglu [11] used n-octa-
decane wax in glass spheres. An agreement between the
numerical predictions and the experimental results was
obtained for the Stefan numbers, Ste, of 0.05 and 0.10.

Melting in the spherical geometry has been studied fur-
ther by Roy and Sengupta [13], who treated analytically the
entire melting process. Their method is similar to that pro-
posed by Bareiss and Beer [6] for a horizontal cylinder, but
with a different approach to the liquid film between the
solid and the wall. The process was assumed to be quasi-
steady, no melting was assumed at the upper surface of
the solid, and the heat transfer occurred through the liquid
film only. Bahrami and Wang [14] also applied the method
of [6] to melting in a sphere, neglecting melting at the upper
solid surface. Prasad and Sengupta [15] used the results of
[6] for the contact zone in their numerical study of melting
in a horizontal cylinder.

Roy and Sengupta [16] present a theoretical model of
gravity assisted melting in a spherical enclosure, which
takes into account natural convection in the melt. The
liquid film and the upper liquid zone are solved separately,
analytically and numerically, respectively. Melting at the
upper surface of the solid is included; however, it is
assumed that this surface remains spherical. The cases con-
sidered had ‘‘the range of parameters encountered in typi-
cal solar thermal applications”, and in particular Ste� 1.
It is shown that the flow in the upper zone is considerably
affected by the motion of the solid core. On the other hand,
the melting process is strongly affected by the Grashof
number: an increase in Gr reduces the effect of the down-
ward motion of the solid core on the flow and melting in
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the upper part of the enclosure. Discussing a generalized
model for gravity-assisted axisymmetric melting, Roy and
Sengupta [17] observe that a ‘‘melt distance parameter”,
which incorporates the Stefan, Archimedes, and Prandtl
numbers, determines the order of the liquid film thickness
and thus governs the heat transfer expressed by the Nusselt
number. Saitoh and Kato [10], who considered a horizontal
cylindrical enclosure, concluded that for the small Stefan
numbers, the contribution of natural convection to the
melting rate is about 10–15%. This contribution becomes
significant when the Stefan number increases.

Fomin and Saitoh [18] presented a mathematical model
of melting in a spherical enclosure with a non-isothermal
wall, showing considerable difference with the previously
obtained results for a constant-temperature wall. Their
analysis is based on the method developed by Bareiss and
Beer [6], with the assumed shape of the solid phase, negli-
gible melting at the upper surface of the solid, close contact
melting, quasi-steady process, and lubrication theory
approach to the liquid film.

In addition to the simplifications and assumptions listed
above, all the works cited herein do not take into account
the volume expansion due to melting: they account for the
density change in order to model solid sinking, but do not
address the volume change. This, of course, could be done
in the simulations only. As for the experiments, the volume
increase was accommodated by ‘‘risers” [11] or ‘‘overflow
pipes” [10] connected to the enclosures. Recently, Wilchin-
sky et al. [19] considered theoretically the volume change
in an elastic, i.e. expandable, enclosure. In a rigid shell, how-
ever, certain part of the nominal volume should be filled by,
say, air. The latter would be either compressed or allowed to
leave the shell during the PCM expansion. Accordingly, the
initial amount of the solid PCM should be set based on the
necessity to accommodate the liquid volume. Thus, ques-
tions arise about the initial shape of the solid PCM and its
effect on the process. This problem is significant considering
the large solid/liquid density changes characteristic for
many prospective PCMs, including paraffins.

The present work is an attempt to solve complete tran-
sient conservation equations simultaneously for solid
PCM, liquid PCM, and air, while allowing for PCM expan-
sion, convection in the fluid media (melted PCM and air),
and solid phase motion in the liquid. No a priori assump-
tions are used for the melting process features and param-
eters, including shape and behavior of the solid and liquid
phases in the lower and upper parts of the enclosure. This
approach has been implemented successfully in a recent
study by the authors [20], where a PCM-based finned heat
sink is considered. Detailed phase fields have been obtained
as functions of time, showing evolution of the heat transfer
in the system as the phase-change material melts. In search
for generalization, dimensional analysis of the results was
performed and presented as the Nusselt numbers and melt
fractions vs. the Fourier and Stefan numbers and fin
parameters. In some cases, the effect of Rayleigh number,
Ra, also was significant.
In the present work, the same approach is used for a
detailed parametric investigation of melting in spherical
shells of 40, 60, and 80 mm in diameter, when the wall-tem-
perature is uniform and varies, in different cases, from 2 �C
to 20 �C above the mean melting temperature of the PCM.
In addition, experiments are performed and their results
serve for the validation of the numerical approach. The
experimental study is based on the previous investigations
by the authors [21,22].

In the following section, a physical model of the problem
is introduced, and the numerical procedure is presented in
detail and discussed. The experimental results and procedure
are described. Then, a comparison is presented of the numer-
ical and experimental results for a test case. We note here that
it is common in the literature to compare numerical predic-
tions with the experimental results of Moore and Bayazito-
glu [11]. However, as observed by Bahrami and Wang [14]
and supported by Roy and Sengupta [16], the numerical
solutions do not take into account a considerable thermal
resistance of the glass used in the experiments. For this rea-
son, the test numerical case used for validation in the present
study includes a shell with the temperature boundary condi-
tion applied to its outer surface. Then, a detailed parametric
investigation is performed. Its findings are followed by a
dimensional analysis that leads to generalized results which
encompass the cases considered in the present study.

2. Numerical study

A physical model of the system is presented in detail
below. Then, the computational procedure is discussed.

2.1. Physical model

In the present investigation, we explore details of melt-
ing in a spherical enclosure of 40, 60, and 80 mm in diam-
eter, at the wall-temperatures of 2, 6, 10, and 20 �C above
the mean melting temperature of the PCM. The properties
of the PCM are based on a commercially available mate-
rial, RT27 (Rubitherm GmbH). A real paraffin blend, like
RT27, does not have sharply defined ‘‘solidus” and ‘‘liqui-
dus” temperatures, and its enthalpy is a continuous func-
tion of the temperature. In the present work, a melting
interval of 28–30 �C is used, as a first step from a ‘‘sharp”

phase-change analysis to a more realistic representation.
The other parameters are: latent-heat 179 kJ/kg, sensi-
ble heat capacity in solid/liquid state 2.4/1.8 kJ/kg K,
thermal conductivity in solid/liquid state 0.24/0.15
W/m K, constant density of 870 kg/m3 in the solid state,
and dynamic viscosity of 3.42 � 10�3 kg/m s in the liquid
state. Variable density was defined in the liquid state as
q = ql/[b(T � Tl) + 1] for 30 �C < T < 100 �C, where ql =
760 kg/m3, Tl = 30 �C, and b = 0.5 � 10�3 K�1, with line-
arly varying density in the ‘‘mushy” state, from 870 kg/m3

at 28 �C to 760 kg/m3 at 30 �C. It is assumed that both
solid and liquid phases are homogeneous and isotro-
pic, and the melting process is axisymmetric. The mol-
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ten PCM and the air are incompressible Newtonian fluids,
and laminar flow was assumed in both. A density-temper-
ature relation is used for air: q = 1.2 � 10�5T2 �
0.01134T + 3.4978.

In the initial state, the solid PCM fills 85% of the
enclosed space. This is done in order to accommodate a sig-
nificant increase in the PCM volume during the solid–
liquid phase transition, due to a large difference in solid
and liquid density that exists in reality. From above, the
PCM is exposed to air. In the simulations, the initial tem-
perature of the whole system is 23 �C, i.e. the PCM is
slightly subcooled.
Fig. 1. The computational domain.
2.2. Computational procedure

The numerical approach makes it possible to calculate
the processes that occur inside the solid PCM (conduction),
liquid PCM (convection), and air (convection) simulta-
neously, and to account for the phase-change, moving
boundary due to the variation of the PCM volume, and
solid phase motion in the melt. Based on the axial symme-
try of the physical model, a computational domain was
defined, as shown in Fig. 1.

In order to describe the PCM–air system with a moving
internal interface but without inter-penetration of the two
media,1 the so-called ‘‘volume-of-fluid” (VOF) model has
been used. In this model, if the nth fluid’s volume fraction
in the computational cell is denoted as an, then the follow-
ing three conditions are possible: if an = 0 the cell is empty
of the nth fluid; if an = 1 the cell is full of the nth fluid; and
if 0 < an < 1 the cell contains the interface between the nth
fluid and one or more other fluids. Thus, the variables and
properties in any given cell are either purely representative
of one of the media, or representative of a mixture of the
media, depending upon the volume fraction values.

For the phase-change region inside the PCM, enthalpy-
porosity approach [23–25] is used, by which the porosity in
each cell is set equal to the liquid fraction in that cell.
Accordingly, the porosity is zero inside fully solid regions.
This approach has been successfully implemented by the
authors for a PCM-based finned heat sink [20].

Therefore, the governing conservation equations used
here for the PCM–air system are:

– continuity

oan

ot
þ ui

oan

oxi
¼ 0 ð1Þ

– momentum

o

ot
ðquiÞ þ

o

oxj
ðqujuiÞ ¼ l

o
2ui

oxjoxj
� op

oxi
þ qgi þ Si ð2Þ
1 The term ‘‘medium” is used here instead of ‘‘phase” in order to prevent
confusion with the solid and liquid phases of the PCM.
– energy

o

ot
ðq�hÞ þ o

oxi
ðqui�hÞ ¼

o

oxi
k

oT
oxi

� �
ð3Þ

where an is the nth fluid’s volume fraction in the computa-
tional cell, q is the density, k is the thermal conductivity, l
is the dynamic viscosity, Si is the momentum source term,
ui is the velocity component, xi is a Cartesian coordinate,
and �h is the specific enthalpy. The latter is defined as a
sum of the sensible enthalpy, �hs ¼ �href þ

R T
T ref

cp dT , and

the enthalpy change due to the phase-change cL, where �href

is the reference enthalpy at the reference temperature Tref,
cp is the specific heat, L is the specific enthalpy of melting
(latent-heat of the material), and c is the liquid fraction
during the phase-change which occurs over a range of tem-
peratures Ts < T < Tl, defined by the following relations:

c ¼ 0 if T < T s; c ¼ 1 if T > T l;

c ¼ T � T s

T l � T s

if T s < T < T l ð4Þ

The source term Si in the momentum equation, Eq. (2), is
given by:

Si ¼ �AðcÞui ð5Þ

where A(c) is the ‘‘porosity function” defined by Brent et al.
[24]. Definition of A(c) makes the momentum equation
‘‘mimic” Carman–Kozeny equations for flow in porous
media:

AðcÞ ¼ Cð1� cÞ2

c3 þ e
ð6Þ

where e = 0.001 is a small computational constant used to
avoid division by zero, and C is a constant reflecting the
morphology of the melting front. This constant is a large
number, usually 104–107. A value of C = 105 has been used
in the previous study [20], where its effect was discussed.
The same value of C is adopted herein.
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Fig. 2. Time-step and grid dependence of the numerical solution.
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The numerical solution has been obtained using the Flu-
ent 6.0 software. The effects of time step and grid size on
the solution were carefully examined in preliminary calcu-
lations, as presented in Fig. 2. In particular, the time-step
was as small as 0.001, 0.002 (chosen), and 0.004 s. As
appears from the results of Fig. 2a, the results obtained
for melt fraction became practically independent of the
time step, through the whole process, i.e. from t = 0 to
the complete melting of the PCM. The grid was built using
the Gambit software, with special attention paid to the
PCM–air interface in the initial state. The grid size was
chosen after careful examination of the results of a grid
refinement process. Fig. 2b shows the results for three dif-
ferent grid sizes, namely 3520 (chosen), 4532, and 5900
cells. One can see that the differences, once again presented
for the whole process, are rather small. Convergence of the
solution was checked at each time step, with the conver-
gence criterion of 10�5 for the velocity components and
continuity, and criterion of 10�8 for energy.

The authors used a Dell PowerEdge 2600 computer,
which features two 3.20 GHz Intel Xeon processors and
is scalable to 12 Gb of PC2100 DDR SDRAM. The CPU
time was rather considerable, of about 300–400 s per sec-
ond of physical time. Thus, a typical run took a few days.

3. Experimental set-up and procedure

In the present study, the experiments are designed spe-
cifically to meet the conditions explored in the numerical
investigation. The inner diameter of the spherical shell is
80 mm. The amount of the PCM is the same as in the sim-
ulations. The solid phase occupies initially 85% of the vol-
ume, having a flat top. In order to achieve a desired shape,
the shell is filled gradually with a liquid PCM allowing the
latter to solidify at each stage. This process is performed at
the reduced ambient pressure, in order to prevent air
entrapment in the PCM. The material used in the experi-
mental study was the RT27 paraffin wax (Rubitherm
GmbH), claimed to be suitable for heat-storage appli-
cations.

The experimental set-up, shown schematically in Fig. 3,
has been extensively described in [21,22]. Experiments are



Fig. 3. Experimental set-up.

E. Assis et al. / International Journal of Heat and Mass Transfer 50 (2007) 1790–1804 1795
performed in a transparent tank, filled with water. In order
to keep water temperature at a certain level, an electric hea-
ter is used, and its power is adjusted using a variable volt-
age controller. In order to ensure uniform temperature of
water inside the tank, a mechanical turbine-type stirrer is
used. In a typical experiment, a spherical shell filled with
the solid PCM is placed into the water. The experiment
continues until the PCM has melted completely. The shell
has a ‘‘neck”, like in [11], that lets the air out when the
PCM expands during its melting.

Thermocouples are used to monitor the temperature of
water at different locations inside the tank. All thermocou-
ples are connected to a PC through a data acquisition unit.
Typical results of the temperature measurements, including
that of the PCM, were presented and discussed in [21] and
are not included herein. We should note, however, that
temperature measurements inside the PCM could alter
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Fig. 4. Comparison of the experimen
the results, because the solid phase becomes suspended
on the thermocouple wires and does not sink, as modeled
by Khodadadi and Zhang [8]. For this reason, visualization
of melting in a glass shell has been chosen as the major
method of investigation. Melting images are recorded by
a digital camera at various stages of the process. Then,
these images are analyzed and the experimental values of
the melt fraction are calculated at various time instants.
The results are used for validation of the numerical
approach, as reported in the next section.
4. Results and discussion

This section presents first a comparison of the experi-
mental results with the results of a simulation performed
for validation purposes. Then, a detailed parametric study
of melting is reported and discussed, and results of the
dimensional analysis are presented.
4.1. Validation of the numerical model

Fig. 4 shows the measured and simulated melt fractions
vs. time for a spherical enclosure 80 mm in diameter, with
the wall thickness of 2 mm, in the environment at 10 �C
higher than the mean melting temperature of the PCM.
As discussed in Section 1, it is essential for validation to
model numerically a shell with a given wall thickness, thus
taking into account a considerable thermal resistance of the
glass.

One can see that the melting time is slightly shorter in
the simulation. We note that in the experiment the temper-
ature of the water was kept fixed, while in the simulation
the same value was set on the outer surface of the shell.
20 25 30 35 40
e, min

 Shell diameter: 80mm
 Glass thickness: 2mm

 Glass conductivity: 0.81W/m oC

 Temperature difference: 10 oC 

tal and numerical melt fractions.



1796 E. Assis et al. / International Journal of Heat and Mass Transfer 50 (2007) 1790–1804
Thus, an additional thermal resistance, albeit small, existed
in the experiments. Also, the modeled glass conductivity,
taken from the literature, could be higher than the actual
one, which had not been measured directly. All in all,
one can conclude that the agreement between the experi-
mental and simulated values is very good.

Furthermore, it appears from Fig. 5 that good agree-
ment is achieved not only in overall parameters, but also
in the details of the melting process. Fig. 5a shows typical
results of visualization for paraffin melting, as obtained
during the experiments, at 2, 5, 10, 15, 20 and 25 min since
the start of the process. One can see from the figure that the
solid phase typically descends. This result is in very good
agreement with the literature. The label on the shell can
be used to observe the process of PCM melting.

Fig. 5b shows examples of the simulated phase distribu-
tion for the same time instants as in Fig. 5a. Fig. 5c illus-
Fig. 5. Experimental and numerical melting patterns: (a) experime
trates the volumetric expansion of the PCM associated
with melting, showing the resulting rise of the PCM level
in the shell between 2 and 25 min that passed since the
start. One can see a good agreement with the experimental
findings. It has been concluded, therefore, that the numer-
ical approach yields valid results both qualitatively and
quantitatively.
4.2. Detailed parametric study

Figs. 6 and 7 show the results for the melt fractions and
mean heat fluxes, respectively. Three shell diameters are
explored: 40, 60, and 80 mm. The temperature differences
are 2 �C, 6 �C and 10 �C above the mean melting tempera-
ture of the PCM. For the 80 mm shell, an additional result
for DT = 20 �C is also shown.
ntal; (b) numerical – solid phase; (c) numerical – interface rise.
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As expected, for each shell diameter the melt fraction
increases more rapidly when the temperature difference is
higher. When the melt fraction reaches unity, Fig. 6a–c,
the mean heat flux drops almost to zero, as illustrated
in Fig. 7a–c, corresponding to heat transfer to the liquid
PCM only. Figs. 6 and 7 also show that for the same
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temperature difference, full melting is reached more rapidly
in a shell of a smaller diameter. It is important to note that
for the shell 80 mm in diameter and the temperature differ-
ence of DT = 10 �C, the melting time was about 27 min, see
Figs. 6c and 7c. However, in the test case, Fig. 4, where
glass thickness was accounted for, the melting time was
as long as about 34 min in the otherwise same conditions.
This difference is consistent with the analysis of Bahrami
and Wang [14], discussed in Section 1.

One can see from Fig. 6 that the melt fraction grows
monotonically with time in all cases considered. On the
other hand, Fig. 7 shows a rather different behavior of
the mean heat flux. At first, it is very high due to the low
thermal resistance associated with the initially thin molten
layer. As the latter grows, the heat flux decreases sharply.
Then, this decrease is stopped, and in certain cases it is even
reversed. A difference is observed between the case with a
very low temperature difference, DT = 2 �C, and the other
cases. In the former, the heat flux decreases monotonically
throughout the melting process. In the latter, an increase in
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Fig. 8. Comparison of the results for the same temperature
the heat flux is observed. This increase may be attributed to
motion initiated in the liquid phase, and is similar to that
observed by Pal and Joshi [26] in a side-heated rectangular
enclosure. However, in their study the motion was due to
temperature-driven natural convection, while here it is
caused also by the sinking solid phase.

While Figs. 6 and 7 present results for different shell
diameters separately, Fig. 8 brings together the results for
the different diameters at the same temperature difference,
DT = 6 �C (Ste = 0.06). Similar trends are observed in the
melt fraction and heat flux evolution. In addition, one
can see that the increase in the heat flux is sharper for a
smaller shell diameter, but its duration is shorter.

Fig. 9 shows an example of simulation results for the
melt fraction evolution throughout the whole simulation
process. The results are presented for the 80 mm shell at
DT = 2 �C (Ste = 0.02). One can see that the solid fraction
sinks in the molten PCM. This result, as well as the
observed shape of the solid, is in excellent agreement with
the experimental results from the literature.
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Fig. 9. Detailed phase fields throughout the melting process, for DT = 2 �C.
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Fig. 10 presents a typical example of the simulated flow
fields at various locations inside the enclosure. The flow
patterns are shown for the case with D = 80 mm and
DT = 6 �C, at t = 400 s after the melting process has been
initiated. Fig. 10a shows motion of air in the bubble above
the PCM. As mentioned above, the air is allowed to leave
the enclosure through the opening shown in Fig. 1. Hence,
air flows out of the enclosure as a result of PCM expansion,
and both its volume and mass decrease slowly during the
process. The motion of air is characterized also by vortices
caused by shell-PCM temperature differences and by the
motion in the adjoining liquid PCM.

Fig. 10b shows that in the upper part of the melt, natu-
ral convection is initiated by the temperature difference
between the heated wall and the relatively cold solid phase.
As a result, the liquid rises along the wall and moves
towards the axis of symmetry of the enclosure, returning
back just above the solid, forming a clockwise vortex in
the cross-section shown in Fig. 10b.

In the lower part of the enclosure, Fig. 10c shows a thin
liquid layer between the sinking solid and the shell. Thus,
the simulation succeeds to model directly the ‘‘close-con-
tact-melting” phenomenon assumed for the cylindrical
and spherical geometries by Bareiss and Beer [6] and
Fomin and Saitoh [18], respectively. This phenomenon is
characterized by a liquid layer which takes the molten
PCM into the upper part of the enclosure while the solid
melts continuously and moves towards the boundary,
‘‘squeezing” the liquid. We note, however, that the simu-
lated layer is more realistic than that assumed in the past,
when it was modeled as a flow in the gap between two sta-
tionary plates. In the simulation, the no-slip condition is
satisfied on both the shell and the solid. As the latter moves
downwards, the velocity near its surface is in the opposite
direction to that of the flow that takes the molten PCM
to the region above the solid. One can see from Fig. 10b
and c that the layer leaves the gap and joins smoothly
the vortex described above. It may be concluded that the
layer itself contributes to creation of this vortex, in addi-
tion to natural convection. We note here that the layer
between the solid and the wall, and its interaction with
the vortex in the melt above the solid, have been observed
to follow in general the same patterns in all cases simulated
in the present study. However, there are indications that
the layer details are different for higher temperature differ-
ences between the wall and the solid. This point needs fur-
ther investigation.
4.3. Dimensional analysis

The results presented in Figs. 6–8 and discussed above
show that similar behavior characterizes the melting pro-
cess under different geometrical and thermal parameters
of the system. It is thus worth to attempt a dimensional
analysis in order to obtain generalized results.

Two dependent dimensionless parameters are used: the
melt fraction of the PCM, defined as the current melted
mass divided by the total mass of the PCM, and the Nus-
selt number, which is defined as

Nu ¼ q00

DT
� R

k
ð7Þ

i.e. it is based on the mean heat flux, q00, the temperature
difference between the wall and the PCM mean melting
temperature, DT, shell radius R, and thermal conductivity
of the PCM, k. We note here that the melt fraction reflects
rather accurately the amount of heat stored in the system
up to a certain moment, while the Nusselt number shows
an instantaneous picture of the process at the same
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moment. Hence, these two parameters supplement one
another.

The dimensionless parameters that define the process
can be obtained from the momentum and energy equa-
tions, Eqs. (2) and (3), if the latter are presented in a form
given by Lacroix [27]. The dimensionless conservation
equations contain the following dimensionless groups:

– the Fourier number

Fo ¼ ðk=qcpÞðt=R2Þ ð8Þ

where cp is the specific sensible heat of the PCM, and the
shell radius, R = D/2, is chosen as the characteristic
length;

– the Stefan number

Ste ¼ cpDT=L ð9Þ
where DT is the difference between the wall-temperature,
Tw, and the PCM mean melting temperature, Tm, and L

is the specific heat of melting. In the present study Stefan
number varies from about 0.02 (DT = 2 �C) to 0.10
(DT = 10 �C), and in an additional case it reaches 0.20
(DT = 20 �C for D = 80 mm);

– the Grashof number

Gr ¼ gq2bDTR3

l2
ð10Þ

where b is the volumetric expansion coefficient intro-
duced earlier. The Grashof numbers vary from about
3 � 104 to 2.5 � 106 under the conditions of the present
study.

– the Prandtl number

Pr ¼ cpl=k ð11Þ
The Prandtl number is about 35 for the material used in
the present study, i.e. Pr� 1.

A combination of the Fourier and Stefan numbers would
have been sufficient for melting accompanied by conduction
only. The examples presented in Fig. 11 were chosen pur-
portedly, to show the behavior of the melt fraction for the
same shell diameter, i.e. the same Fourier number in differ-
ent cases (Fig. 11a), and for the same temperature difference
between the wall and the PCM, i.e. a constant Stefan num-
ber (Fig. 11b). One can see from Fig. 11 that when the melt
fraction is presented vs. the product, FoSte, of the Fourier
and Stefan numbers, no generalization is achieved,
although the different curves come closer together, espe-
cially in Fig. 11b as compared to Fig. 8a.

Careful application of the dimensionless groups intro-
duced above leads to the generalized results presented in
Figs. 12 and 13. Fig. 12 shows the melt fraction vs. a com-
bination of the Fourier, Stefan, and Grashof numbers,
namely FoSte1/3Gr1/4, for all cases considered in the present
study (compare FoSte3/4Gr1/4 obtained for a cylindrical
enclosure by Saitoh and Kato [10]). One can see that all
curves, except that for Ste = 0.2, practically merge into a
single curve. In our opinion, the higher dimensionless melt-
ing time of about 10–20% for Ste = 0.2 results from the
above-mentioned changes in the melting process that char-
acterize higher given temperature differences between the
wall and the PCM, and in particular larger thickness of
the lower liquid layer and its distortion. Thus, we conclude
that the generalization is full for Ste 6 0.1, which corre-
sponds here to DT 6 10 �C.

Analysis of the results of Fig. 12 yields the following
expression for the melt fraction:

MF ¼ 1� 1� FoSte1=3Gr1=4

1:9

� �3=2

ð12Þ

This correlation, also shown in Fig. 12, is valid for the
range of parameters explored in the present study, and in
particular for 0.02 6 Ste 6 0.10 and Pr� 1.

Fig. 13a shows the dimensionless mean heat flux from
the wall vs. the same combination of the Fourier, Stefan,
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and Grashof numbers, FoSte1/3Gr1/4. The Nusselt number
is normalized using the Grashof number. The exponent
of Gr has been chosen based on the laminar natural con-
vection under the constant-wall-temperature conditions.
One can see that distinct curves are formed corresponding
to the different values of the Stefan number. Finally,
Fig. 13b shows that these curves can be further merged
when the Nusselt number is additionally normalized using
the Stefan number.

The results of the present study have been obtained for
the cases in which air was allowed to flow out of the enclo-
sure to accommodate the PCM expansion. In reality, the
shell would rather be sealed, and the air compressed. Also,
it has been assumed that the PCM–air interface is initially
horizontal and flat. In real conditions, its shape will be
determined by the solidification process. The authors are
planning to address these points in a future study. How-
ever, it is our belief that the trends discovered in the present
study are quite general, and the results of the analysis per-
formed herein will be valid also when additional features
are taken into account.

5. Closure

In the present study, the process of melting of a
phase-change material (PCM) in spherical geometry has
been explored experimentally and numerically. Transient
numerical simulations were performed using the Fluent
6.0 software. Melting temperature of the PCM was incor-
porated in the simulations along with its other properties,
including the latent and sensible specific heat, thermal con-
ductivity and density in solid and liquid states. The exper-
imental study included visualization of the melting process.
The material used was a commercially available paraffin
wax, which is manufactured to be used mainly in latent-
heat-based heat storage systems.
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The simulations provided detailed phase and flow fields
inside the system which were compared with the experi-
mental results and discussed in the paper. To the best of
our knowledge, some inherent features of the process have
been modeled directly and simultaneously for the first time,
including the PCM volume increase due to the phase-
change, solid phase motion in the melt, and the liquid layer
in the lower part of the enclosure.

Dimensional analysis of the results was performed and
presented as the mean Nusselt numbers and PCM melt
fractions vs. an appropriate combination of the Fourier,
Stefan, and Grashof numbers. This analysis led to a gener-
alization which encompasses the cases considered herein.
This generalization is presented as a correlation applicable
within a specified range of parameters which were studied
currently.
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